• Publications
  • Software
  • Data Sets
  • Training Resources

Filter by:






Results for: Publications


Structure-leveraged methods in breast cancer risk prediction. Fan J, Wu Y, Yuan M, Page D, Liu J, Ong IM, Peissig P, Burnside E. Journal of Machine Learning Research 17:1-15, 2016.

Modeling the temporal evolution of postoperative complications. Feld SI, Cobian AG, Tevis SE, Kennedy GD, Craven MW. Proceedings of the American Medical Informatics Association Annual Symposium, 2016.

Adaptive signal recovery on graphs via harmonic analysis for experimental design in neuroimaging. Kim WH, Hwang SJ, Adluru N, Johnson SC, Singh V. Proceedings of the 14th European Conference on Computer Vision (ECCV), Volume 9910 Lecture Notes in Computer Science, 2016.

Magellan: toward building entity matching management systems. Konda P, Das S, Suganthan P, Doan A, Ardalan A, Ballard JR, Li H, Panahi F, Zhang H, Naughton J, Prasad S, Krishnan G, Deep R, Raghavendra V. Proceedings of the 42nd International Conference on Very Large Databases, 2016.

Baseline regularization for computational drug repositioning with longitudinal observational data. Kuang Z, Thomson J, Caldwell M, Peissig P, Stewart R, Page D. Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016.

Computational drug repositioning using continuous self-controlled case series. Kuang Z, Thomson J, Caldwell M, Peissig P, Stewart R, Page D. Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016.

Latent variable graphical model selection using harmonic analysis: applications to the Human Connectome Project (HCP). Kim WH, Kim HJ, Adluru N, Singh V. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Experimental design on a budget for sparse linear models and applications. Ravi SN, Ithapu VK, Johnson SC, Singh V. Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016.

Coupled harmonic bases for longitudinal characterization of brain networks. Hwang SJ, Adluru N, Collins MD, Ravi SN, Bendlin BB, Johnson SC, Singh V. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

A hierarchical framework for state space matrix inference and clustering. Zuo C, Chen K, Hewitt K, Bresnick EH, Keles S. Annals of Applied Statistics, 2016.

Next Page